Default header image

Publications


Covers Featuring Dr. Rogers’ Work



Neith (Ancient Egyptian), Saraswati (Hindusim & Shaktism), Thoth (Ancient Egyptian), Brihaspati (Hindu), Laozi (Taoism), Odin (Norse mythology), Hayagriva (Buddhism), Gamayan, (Slavic Folklore) surrounding Papa Legba (Haitian Vodou). All are deities associated with knowledge and truth.

2024


[115] Rogers, M.A. 2024. The Role of Food Structure in the Biophysics of Digestion: The Remarkable Coevolution of the Casein Micelle. Food Biophysics. https://doi.org/10.1007/s11483-024-09882-2


[114] Ahmed, N., Smith, R.W., Chen, P.X., Rogers, M.A., Spagnuolo, P.A. 2024. Bioaccessibility of avocado polyhydroxylated fatty alcohols. Food Chemistry. http://doi.org/10.1016/j.foodchem.2024.140811.


[113] Colaruotolo, L.A., Singh, S.S., Dobson, S., Lim, L.-T., Joye, I.J., Rogers, M.A., Corradini, M.G. 2024. Mapping Deterioration in Electrospun Zein Nonwoven Nanostructures Encapsulating Corn Oil. Current Research In Food Science. 9, 100801. https://doi.org/10.1016/j.crfs.2024.100801


[112] Liao, Z., Wang, X., Lu, M., Xiao, J., Rogers, M.A., Cao, Y., Lan, Y. 2024. Interfacial Crystallized Oleogel Emulsion with Improved Freeze-thaw Stability and Tribological Properties: Influence of Cooling Rate. Food Chemistry. 445, 138704. https://doi.org/10.1016/j.foodchem.2024.138704


[111] Zhu, D., Sadat, A., Joye, I.J., Vega, C., Rogers, M.A. 2024. Stabilizing Meringues with Garlic Juice and Allicin (thio-2-propene-1-sulfinic acid S-allyl ester). Food Chemistry. 431, 137121. https://doi.org/10.1016/j.foodchem.2023.137121


2023


[110] Bai, Y., Nasr, P., King, G., Reid, J.W., Leontowich, A.F.G., Rosendahl, S., Corradini, M.G., Weiss, R.G., Auzanneau, F.I., Rogers, M.A. 2023. Self-Assembled Fibrillar Networks of Halogenated 1,3:2,4-Dibenzylidene-d-sorbitol. Nanoscale. 15; 16933-16946 https://doi: 10.1039/D3NR03988A.


[109] Amer, H., Zhou, Z., Corradini, M.G., Joye, I.J., Rogers, M.A. 2023. The evolution of wheat milling affects sugar bioaccessibility during TIM-1 in vitro digestion. Food Research International. 174; 1; 113521. https://doi.org/10.1016/j.foodres.2023.113521


[108] Sultani, A., Ghazani, S.M., Marangoni, A.G., Joye, I.J., Corradini, M.G., Rogers, M.A. 2023. Mixed cyclic di-amino acid structured edible oils: a next-generation fat replacer. Soft Matter. 19; 6871-6874. https://DOI:10.1039/D3SM00849E.


[107] Oliveira, N.L., Espinal-Ruiz, M., Neves, I.C.O., Silva, S.H., de Resende, J.V., Rogers, M.A.,. 2023. Evaluation of α-tocopherol microencapsulation stability with either coconut oil or canola oil cores in Greek yogurt and butter. Food Chemistry Advances. 2, 100277. https://doi.org/10.1016/j.focha.2023.100277


[106] Li, Y.L., Ulbikas, J.D., Hamad, S., Chen, R., Maw, J., Nasr, P., Rogers, M.A., Wright, A.J. 2023.Comparison of static and dynamic in vitro digestibility and bioaccessibility of palm-based emulsions and correlation to a human study: Effects of triacylglycerol crystallinity. Food and Function. 14;4302-4313. https://doi.org/10.1039/D2FO03782C


[105] Liao, Z., Dong, L., Lu, M., Zheng, S., Cao, Y., Rogers, M.A., Lan, Y. 2023. Construction of interfacial crystallized oleogel emulsion with improved thermal stability. Food Chemistry. 420, 136029. https://doi.org/10.1016/j.foodchem.2023.136029


[104] Zhou, Z., Sultani A., Amer, H., Wang, Y., Nasr, P., Corradini, M.G., Goff, H.D., Lapointe, G., Rogers, M.A., 2023. The digestive fate of beef versus plant-based burgers from bolus to stool. Food Research International. 167; 112688. https://https://doi.org/10.1016/j.foodres.2023.112688


[103] Zheng, R., Chen, Y., Wang, Y., Rogers, M.A., Cao, Y., and Lan, Y. 2022. Microstructure and physical properties of novel bigel-based foamed emulsions. Food Hydrocolloids: 134, 108097. https://doi.org/10.1016/j.foodhyd.2022.108097


2022


[102] LaPointe, G., Rogers, M.A., 2022. How Do Food and Probiotics Influence the Composition and Activity of the Gut Microbiota?” 2022, Microorganisims.10; 2097.  https://doi.org/10.3390/microorganisms10112097


[101] Rogers, M.A., Amer, H. 2022. Food As We Knew It: Food Processing as an Evolutionary Discourse. Trends In Food Science and Technology. 128, 68-74. https://doi.org/10.1016/j.tifs.2022.07.015.


[100] Hamad, S., Chen, R., Zhou, Z., Nasr, P., Li, Y.L., Tari, N.R., Rogers, M.A., Wight, A.J. 2022. Palm Lipid Emulsion Droplet Crystallinity and Gastric Acid Stability in Relation to in vitro Bioaccessibility and in vivo Gastric Emptying. Frontiers In Nutrition. 9, 940045. https://doi.org/10.3389/fnut.2022.940045


[99] Zhou, Z., Nasr, P., Goff, H.D., Sultani, A., Joye, I.J., Corradini, M.G. Rogers, M.A. 2022 Sliced versus formulated potato chips – Does food structure alter lipid digestion? Food Structure. 32, 100272. https://doi.org/10.1016/j.foostr.2022.100272


[98] Borduas, M., Spagnuolo, P.A., Marangoni, A.G., Corradini, M.G., Wright, A.J., Rogers, M.A., 2022. Lipid Crystallinity of Oil-in-Water Emulsions Alters In vitro Lipid Digestion Kinetics. Food Chemistry. 282, 132326. doi.org/10.1016/j.foodchem.2022.132326


[97] Xu, A.X., West, E.A.L., Nasr, P., Zhou, Z., Corradini, M.G., Wright, A.J., Joye, I., Rogers, M.A. 2022. Structural Properties of Egg Yolks Modify in-vitro Lipid Digestion. Food Biophysics. doi.org/10.1007/s11483-021-09699-3.


[96] Wei, F., Lu, M., Li, L., Xiao, J., Rogers, M.A., Cao, Y., and Lan, Y. 2022. Fabrication of Foam-Templated Oleogels based on Rice Bran Protein. Food Hydrocolloids, 124, 107245. doi.org/10.1016/j.foodhyd.2021.107245


2021


[95] Petker, K. Rogers, M.A., Joye, I.J. 2021. Chemical hardening gliadin nanoparticles alter fluid interface behavior. Food Structure. 30, 100218. doi.org/10.1016/j.foostr.2021.100218


[94] West, E.A.L., Xu, A.X., Bohrer, B.M., Corradini, M.G., Joye, I.J., Wright, A.J., Rogers, M.A., Beef Longissimus Muscle Degree of Doneness Alters Lipid Bioaccessibility in the TIM-1.  Journal of Agriculture and Food Chemistry. 2021,69, 8394–8402. doi.org/10.1021/acs.jafc.1c03422


[93] Nasr, P., Leung, H., Auzanneau, F.-I., Rogers, M.A. Supramolecular Fractal Growth of Self-Assembled Fibrillar Networks. Gels. 2021, 7, 46 doi.org/10.3390/gels7020046


[92] Lin, X., Chen, P.X., Robinson, L.E., Rogers, M.A., Wright, A.J., Lipid digestibility and bioaccessibility of a high dairy fat meal altered when consumed with whole apples: Investigations using static and dynamic in vitro digestion models.  Food Structure. 2021, doi.org/10.1016/j.foostr.2021.100191


[91] Amer, H., AlHassawi, F., Ludescher, R. D., Joye, I.J., Corradini, M.G., Rogers, M.A. Luminescence Spectroscopy – a Useful Tool in Real-Time Monitoring of Viscosity during In-Vitro Digestion.  Food Biophysics. 2021, doi.org/10.1007/s11483-020-09660-w.


2020


[90] Nasr, P., Corradini, M.G., Hill, J.D., Weiss, R.G., Auzanneau F.-I., Rogers, M.A. Hansen Solubility Parameters Clarify the Role of the Primary and Secondary Hydroxyl Groups on the Remarkable Self-Assembly of 1:3,2:4 Dibenzylidene Sorbitol.  Journal of Physical Chemistry C. doi.org/10.1021/acs.jpcc.0c07671


[89] Cuello, V., Zarza, G., Corradini, M.G., Rogers, M.A. 2020. Data Science & Engineering into Food Science: A novel Big Data Platform for Low Molecular Weight Gelators’ Behavioral Analysis.  Journal of Computer Science and Technology.  20, 72-79. doi.org/10.24215/16666038.20.e08


[88] Dong, L., Lv, M., Gao, X., Zhang, L., Rogers, M.A., Cao, Y., Lan, Y. 2020. In vitro gastrointestinal digestibility of phytosterol oleogels: Influence of self-assembled microstructure on emulsification efficiency and lipase activity. Food & Function. 11, 9503-9513. doi.org/10.1039/D0FO01642J


[87] Guo, S., Song, M., Gao, X., Dong, L., Hou, T., Ling, X., Tan, W., Cao, Y., Rogers, M.A., Lan, Y. Assembly Pattern of Multicomponent Supramolecular Oleogel Composed of Ceramide and Lecithin in Sunflower oil: Self-assembly or Self-sorting?  Food & Function.  11, 7651-7660. doi.org/10.1039/D0FO00635A


[86] Mansilla W.D., Marinangeli, C.P.F., Cargo-Froom, C., Franczyk, F., House, J.D., Elango, R., Columbus, D.A., Kiarie, E., Rogers, M.A., Shoveller, A.K. 2020. Comparison of methodologies used to define the protein quality of human foods and support regulatory claims. Applied Physiology, Nutrition and Metabolism. 45, 917-926. doi.10.1139/apnm-2019-0757


[85] Ahmed, N., Kermanshahi, B., Ghazani, S.M., Tait, K., Tcheng, M., Roma, A., Callender, S.P., Smith, R.W., Tam, W., Wettig, S.D., Rogers, M.A., Marangoni, A.G., Spagnuolo, P.A., 2020. Avocado-derived polyols for use as novel co-surfactants in low energy self-emulsifying microemulsions. Sci Rep 10, 5566. doi.org/10.1038/s41598-020-62334-y


[84] Guo, S., Lv, M., Chen, Y., Hou, T., Zhang, Y., Huang, Z., Cao, Y., Rogers, M.A., Lan, Y., 2020.  Engineering Ceramide/Lecithin Oleogels – Engineering water-induced ceramide/lecithin oleogels: understanding the influence of water added upon pre- and post-nucleation. 11, 2048-2057. doi.org/10.1039/C9FO02540E


[83] Neves, I.C.O., Teixeira Lago, A.M., Silva, S.H.,  Oliveira, N.L., Ng, N., Sultani, A., Campelo Felix, P.H., Alcântara Veríssimo, L.A., Vilela de Resende, J.A., Rogers, M.A.   2019. Effect of carrier oil on α-tocopherol encapsulation in ora-pro-nobis (Pereskia aculeata Miller) mucilage-whey protein isolate microparticles. Food Hydrocolloids. 105, 105716. doi.10.1016/j.foodhyd.2020.105716.


[82] Fameau, A.-L., Rogers, M.A,. 2020. The Curious Case of 12-Hydroxystearic Acid –Dr. Jekell and Mr. Hyde of Molecular Gelators. Current Opinion in Colloid and Interface Science. 45. 68-82. doi.org/10.1016/j.cocis.2019.12.006


2019


[81] Lan, Y., Lv, M., Guo, S., Nasr, P., Ladizhansky, V., Vaz, R., Corradini, M.G., Hou, T., Ghazani, S.M., Marnangoni, A.G., Rogers, M.A., 2019. Molecular Motifs Encoding Self-Assembly for Peptide Fibers into Molecular Gels. Soft Matter.  15. 9205-9214. doi.org/10.1039/C9SM01793C


[80] Ng, N., Chen, P., Ghazani, S.M., Marnagoni, A.G., Goff, H.D., Joye, I.J., Rogers, M.A. 2019. Lipid digestion of oil-in-water emulsions stabilized with low molecular weight surfactants.  Food & Function. 20, 8195-8207. DOI: 10.1039/c9fo02210d


[79] Guo, S., Song, M., He, X. Yang, F., Rogers, M.A., Cao, Y., Lan, Y. 2019. Water-Induced Self-Assembly of Mixed Gelator System (Ceramide and Lecithin) for Edible Oil Structuring. Food & Function. 10, 3923-3922. doi.org/10.1039/C9FO00473D


[78] Huang, J., Chen, P.X., Rogers, M.A., Wettig, S.D., 2019. Investigating the Phospholipid Effect on the Bioaccessibility of Rosmarinic Acid-Phospholipid Complex through a Dynamic Gastrointestinal in-Vitro Model. Pharmaceutics. 11. 156-167.  doi.org.10.3390/pharmaceutics11040156


[77] Chen, P., Rogers, M.A. Opportunities and Challenges in Developing Orally-Administered Cannabis Edibles.  2019. Current Opinion in Food Science. 28, 7-13. doi.org/10.1016/j.cofs.2019.02.005


[76] Joye, I.J., Corradini, M.G., Duizer, L.M., Bohrer, B.M., LaPointe, G., Farber, J.M., Spagnuolo, P.A., and Rogers, M.A. 2019. A Comprehensive Perspective of Food Nanomaterials. Advances in food and Nutrition Research. 88, 1-45. doi.org.10.1016/bs.afnr.2019.01.001


2018


[75] AlHasawi, F.M., Fondaco, D., Ben-Elazar, K., Corradini, M.G., Ludescher, R.D., Bolster, D., Carder, D., Chu, Y., Chung, Y., Johnson, J., Rogers, M.A., 2018. Luminal Viscosity and Sugar Bioaccessibility of Instant and Steel-Cut Oat/Milk Protein Blends.  Food Hydrocolloids. 82, 424-433. doi.org/10.1016/j.foodhyd.2018.04.014


[74] Bandali, E., Wang, Y., Lan, Y., Rogers, M.A., Shapes, S. 2018. The influence of dietary fat and intestinal pH on calcium bioaccessibility: an in vitro study.  Food & Function. 9,1809-1815. /doi.org/10.1039/C7FO01631J


[73] Templeman, J.R., Rogers, M.A., Cant, J.P., McBride, B.W., Osbern, V.R., 2018. In vitro ruminal dry matter disappearance and fermentative gas production of holy basil (Ocimum sanctum L.) within an alginate gel and dispersed wax organogel droplets. Journal of the Science of Food and Agriculture. 12, 4488-4494. doi.10.1002/jsfa.8973


[71] AlHasawi, F.M., Corradini, M.G., Rogers, M.A., Ludescher, R.D.* 2018. Potential Application of Luminescent Molecular Rotors in Food Research.  Critical Reviews in Food Science & Nutrition. 58, 1902-1916. doi.10.1080/10408398.2017.1278583


2017


[70] Singh, A., Auzanneau F.-I., Coradini, M.G., Grover, G., Weiss, R.G., Rogers, M.A.* 2017. Molecular Nuances Governing the Self-Assembly of 1,3:2,4-Dibenzylidene-D-Sorbitol. Langmuir. 33, 10907-10916. doi.org/10.1021/acs.langmuir.7b02191


[69] Jensen, D.A., Rogers, M.A., Schaffner, D.W. 2017. Surfactant Concentration and Type Affects the Removal of Escherichia coli from Pig Skin During a Simulated Handwash.  Letters in Applied Microbiology. 65, 292-297. doi.org/10.1111/lam.12777


[68] Singh, A., Auzanneau F.-I., Rogers, M.A.* 2017. Advances in Edible Oleogel Technologies – A Decade in Review.  Food Research International.  97, 307-317. doi.org/10.1016/j.foodres.2017.04.022


[67] Alhassawi, F.M., Fondaco, D., Ben-Elazar, K.,  Ben-Elazar, S., Yim Yan Fan, Corradini, M.G., Ludescher, R.D., Bolster, D., Chu, Y., Johnson, J., Rogers, M.A.* 2017.  In vitro Measurements of Luminal Viscosity and Glucose/Maltose Bioaccessibility for Oat Bran, Instant Oats, and Steel Cut Oats. Food Hydrocolloids. 70, 293-303. doi.org/10.1016/j.foodhyd.2017.04.015


[66] Rogers, M.A.,* Corradini, M.A., Emge, T.J. 2017. Supramolecular Anisotropy in Molecular Gels Induced by Solvent Selection. Materials Chemistry and Physics. 194, 225-230. doi.org/10.1016/j.matchemphys.2017.03.044


[65] Rogers, M.A.,* Spagnuolo, P.A. Wang, T.-W., Angka, L. 2017. A Potential Anti-Cancer Hard-Stock Fat Replacer. Food Science & Nutrition. 5, 579–587. doi.org/10.1002/fsn3.433


2016


[64] Rogers, M.A.,* Marangoni. A.G., 2016. Kinetics of 12-Hydroxyoctadecanoic Acid SAFiN Crystallization Rationalized using Hansen Solubility Parameters.  Langmuir.  32, 12833-12841. doi.org/10.1021/acs.langmuir.6b03476


[63] Corradini, M.G.,* Rogers, M.A. 2016.  Molecular Gels: Improving Selection and Design Through Computational Methods.  Current Opinion in Food Science. 9, 84-92. doi.org/10.1016/j.cofs.2016.09.009


 [62] De La Peña-Gil, A., Toro-Vazquez, J.F., Rogers, M.A.* 2016.  Simplifying Solubility Parameters for Complex Edible Fats and Oils.  Food Biophysics.  11, 283-291. doi.org/10.1007/s11483-016-9440-9


[61] Rogers, M.A., Feng, Q., Ladizhansky, V., Good, D., Grahame, D.A.S., Bryksa, B.C., Smith, S.A., Corridini, M, Lim, L.-T., Guild, B., Burnet, P.-G., Shim, Y.Y., Reaney, M.J.T. 2016. Self-Assembled Supramolecular Fibrillar Networks Comprised of an Orbitide.  RCS Advances. 6, 40765-40776. doi.org/10.1039/C6RA05154E


[60] Thilakarathna, S., Rogers, M.A., Huynh, S., Lan, Y., Marangoni, A., Robinson, L., Wright, A.J.* 2016. Investigations of in vitro bioaccessibility from interesterified stearic acid-rich blends.  Food & Function. 7, 1932-1940. doi.org/10.1039/c5fo01272d


[59] Rogers, M.A., 2016.  Naturally Occurring Food Nanomaterials.  Current Opinion in Food Science.  7, 14-19. doi.org/10.1016/j.cofs.2015.08.005


2015


[58] Rogers, M.A., and Spagnuolo, P.A.* 2015. Food as a Drug.  Oncoscience.  2, 801-802. doi.org/10.18632/oncoscience.250


[57] Scott, R.S.,* Derosa, K., & Rogers, M.A., 2015.  Cooking and sugar bioaccessibility from starch in human evolution.  American Journal of Physical Anthropology.  156, 283-283.


[56] Bandali, E., Rogers, M.A., & Shapses, S.* 2015.  The higher calcium absorption associated with a high fat diet is not due to intestinal calcium availability.  The Journal of the Federation of American Societies for Experimental Biology (The FASEB Journal). 29, 760.2.


[55] Wang, T.-M. and Rogers, M.A.* 2015.  Biomimicry – An Approach to Engineering Oils into Solid Fats.  Lipid Technology.  Feature Article. 27, 1-4. doi.org/10.1002/lite.201500036


[54] Rogers, M.A., Liu, X., & Weiss, R.G.*, 2015. Dissecting Kinetic Pathways to formation of the Fibrillar objects in molecular gels Using Synchrotron FT-IR.  CrystEngComm. 17, 8085-8092. /doi.org/10.1039/C5CE00733J


[53] Rogers, M.A.* 2015. Innovations in Food Science: From Bioactives to Whole Foods.  Current Opinion in Food Science.  4, 139-140. doi.org/10.1016/j.cofs.2015.06.006


[52] Ting,Y., Jiang,Y., Lan, Y., Xia, C., Lin, Z., Rogers, M.A., & Huang, Q.* 2015. Viscoelastic Emulsion Improved the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro and in Vivo Models. Molecular Pharmaceutics.  12, 2229-2236. doi.org/10.1021/mp5007322


[51] Lan, Y., and Rogers, M.A., 2015. 12-Hydroxystearic acid SAFiNs in Aliphatic Diols—A Molecular Oddity. CrystEngComm. 17, 8031-8038. doi.org/10.1039/C5CE00652J


[50] Lan, Y., Corradini, M.G., Weiss, R.G., Raghavan, S.R., and Rogers, M.A. 2015. To Gel or Not to Gel: Correlating Molecular Gelation with Solvent Parameters. Chemical Society Reviews. 44, 6035-6058. (Cover Article) /doi.org/10.1039/C5CS00136F


[49] Fondaco, D., AlHasawi, F., Lan, Y., Ben-Elazar, S., Connely, K., and Rogers, M.A.* 2015. Biophysics of Lipid Digestion in Infant Formulas and Breast milk. Food Biophysics. 10, 282-291. doi.org/10.1007/s11483-014-9388-6


[48] Liu, C. & Rogers, M.A.* 2015.  Self-Assembly of 12-Hydroxystearic Acid Molecular Gels in Mixed Solvent Systems Rationalized using Hansen Solubility Parameters.  Colloid and Polymer Science. 293, 975-983. doi.org/10.1007/s00396-014-3480-9


[47] Rogers, M.A., and Weiss, R.G.* 2015. Alkane-Based Molecular Gelators and the Structures and Properties of their Gels. New Journal of Chemistry.  39, 785-799. doi.org/10.1039/C4NJ01439A


2014


[46] Du, H., Corradini, M.G., Ludescher, R., Rogers, M.A.* 2014. Micro-Viscosity of Oil Confined in a Colloidal Fat Crystal Network. Soft Matter.  10, 8652-8658. doi.org/10.1039/c4sm01632g


[45] Lan, Y., Corradini, M. G., Rogers, M.A.* 2014.  Do Molecular Gelators Cluster in Hansen Space? Crystal Growth & Design.  14, 4811-4818. doi.org/10.1021/cg500985e


[44] Rogers, M.A.,* Yan, Y.-F., Ben-Elazar, K., Lan, Y., Faig, J., and Uhrich, K. 2014. Salicylic acid (SA) Bioaccessibility from SA-based Poly(anhydride-ester). Biomacromolecules. 15, 3406-3411. doi.org/10.1021/bm500927r


[43] Lan,Y., Corradini, M.G., Liu, X., May, T., Borondics, F., Weiss, R.G., and Rogers, M.A.,* 2014. Comparing and Correlating Solubility Parameters Governing the Self-Assembly of Molecular Gels Using 1,3:2,4-Dibenzylidene Sorbitol as the Gelator. Langmuir.30, 14128-14142. (Invited Feature Article & ACS Editors Choice Article & Cover Article) doi.org/10.1021/acs.langmuir.7b02191


[42] Rogers, M.A.,* Strober, T., Bot, A., Toro-Vazquez, J.F., Stortz, T., and Marangoni, A.G., 2014.  Edible Oleogels in Molecular Gastronomy.  International Journal of Gastronomy and Food Science. 2, 22-31. doi.org/10.1016/j.ijgfs.2014.05.001


[41] Szakal, C., Roberts, S., Westerhoff, P., Bartholomaeus, A., Buck, N., Illuminato, I., Canady, R., and Rogers, M.A.* 2014. Measurement of Nanomaterials in Foods: Integrative Consideration of Challenges and Future Prospects. ACS Nano.  8, 3128-3135. doi.org/10.1021/nn501108g


2013


[40] Xu, S., Cavera, V., Rogers, M.A., Huang, Q., Zubovskiy, K., and Chikindas, M.L.* 2013. Benzoyl Peroxide Formulated Polycarbophil/Carbopol® 934P Hydrogel with Selective Antimicrobial Activity, Potentially Beneficial for Treatment and Prevention of Bacterial Vaginosis. Infectious Diseases in Obstetrics and Gynecology. 2013, 1-10.  doi.org/10.1155/2013/909354


[39] AlHassawi, F. and Rogers, M.A.* 2013. Ternary Phase Diagram of B-Sitosterol, G-Oryzanol and Canola Oil. Journal of the American Oil Chemists Society. 90, 1533-1540. doi.org/10.1007/s11746-013-2302-4


[38] Speranza, A., Corradini, M.G., Hartman, T.J., Ribnicky, D., Oren, A. and Rogers, M.A.* 2013. Influence of Emulsifier Structure on Lipid Bioaccessibility in Oil/Water Emulsions. Journal of Agriculture and Food Chemistry. 61, 6505-6515. doi.org/10.1021/jf401548r


[37] Pal, A., Abraham, S., Rogers, M.A., Dey, J., Weiss, R.G.* 2013. Comparison of Dipolar, H-Bonding, and Dispersive Interactions on Gelation Efficiency of Positional Isomers of Keto and Hydroxy Substituted Octadecanoic Acids. Langmuir. 29, 6467-6475. doi.org/10.1021/la400664q


[36] Gao, J., Wu, S.,Emge, T.J., and Rogers, M.A.*2013. Influence of Solvent on the Supramolecular Architectures in Molecular Gels. Soft Matter. 9, 5942-5950. doi.org/10.1039/C3SM50936B


[35] Wu, S., Gao, J., Emge, T.J., and Rogers, M.A.*2013. Nanoscale and Microscale Structural Changes Alter the Critical Gelator Concentration of Molecular Gels in Different Organic Solvents. CrystEngComm, 15, 4507-4515. doi.org/10.1039/C3CE40323H


[34] Lee, P.,and Rogers, M.A.* 2013. Phase Selective Sorbent Xerogels As Reclamation Agents for Oil Spills. Langmuir. 29, 5617-5621. doi.org/10.1021/la400805c


[33] Wu, S., Gao, J., Emge, T.J., and Rogers, M.A.* 2013. Solvent Induced Polymorphic Nanoscale Transitions for 12-Hydroxyoctadecanoic Acid Molecular Gels. Crystal Growth & Design. 13, 1360-1366. doi.org/10.1021/cg400124e


2012


[32] Lee, P., and Rogers, M.A.* 2012. Effect of Calcium Source and Exposure-Time on Basic Caviar Spherification Using Sodium Alginate. International Journal of Gastronmeny and Food Science. 1, 96-100. doi.org/10.1016/j.ijgfs.2013.06.003


[31] Rogers, M.A.,* Abraham, S., Bodondics, F., and Weiss, R.G. 2012. Influence of the Hydroxyl Position in Racemic Hydroxyoctadecanoic Acids on the Crystallization Kinetics and Activation Energies of Gels and Dispersions in Mineral Oil. Crystal Growth & Design. 12, 5497-5504. doi.org/10.1021/cg301071x


[30] Gao, J., Wu, S., and Rogers, M.A.* 2012. Harnessing Hansen Solubility Parameters To Predict Organogel Formation. Journal of Materials Chemistry. 22, 12651-12658. doi.org/10.1039/C2JM32056H


[29] Abraham, S.,Lan, Y., Lam, R.S.H., Grahame, D.A.S., Kim, J.J.H., Weiss, R.G., and Rogers, M.A.* 2012. Influence of Positional Isomers on the Macroscale and Nanoscale Architectures of Hydroxyoctadecanoic Acid Molecular Gels. Langmuir. 28, 4955-4964. doi.org/10.1021/la204412t


[28] Rogers, M.A.,* and Kontogiorgos, V., 2012. Temperature dependence of relaxation spectra of self-assembled fibrillar networks of 12-hydroxystearic acid in canola oil organogels. Food Biophysics. 7, 132-137. doi.org/10.1007/s11483-012-9250-7


2011


[27] Rogers, M.A.* 2011. Co-operative self-assembly of cholesterol and γ-oryzanol composite crystals. CrystEngComm. 13, 7049-7057. doi.org/10.1039/C1CE05818E


[26] Lam, R.S.H., and Rogers, M.A.* 2011. Activation Energy of Crystallization for Trihydroxystearic Acid, Stearic Acid and 12-Hydroxystearic Acid under Non-Isothermal Cooling Conditions. Crystal Growth and Design. 11, 3593-3599. doi.org/10.1021/cg200553t


[25] Grahame, D.A.S., Olauson, C. Lam, R.S.H., Pedersen, T., Borondics, F. Abraham, S. Weiss, R.G., and Rogers,M.A.* 2011. Influence of Chirality on the Modes of Self-Assembly of 12-Hydroxystearic Acid in Molecular Gels of Mineral Oil. Soft Matter. 7, 7359-7365. /doi.org/10.1039/C1SM05757J


[24] Rutherford, H., Low, N.H., Borondics, F., Pedersen, T., and Rogers, M.A.* 2011. Dependence of Liquid Crystal Morphology on Phospholipids Hydrocarbon Length. Colloids and Surfaces: Biointerfaces. 87, 116-121. doi.org/10.1016/j.colsurfb.2011.05.009


[23] Rogers, M.A.,* and Kim, J.J.H. 2011. Rheological Assessment of the Sol-Gel Transition for Self-Assembling Low Molecular Weight Gelators. Food Research International. 44, 1447-1451. doi.org/10.1016/j.foodres.2011.03.014


[22] Lam, R. and Rogers, M.A. 2011.* Experimental Validation of the Modified Avrami Model for Non-Isothermal Crystallization Condition. CrystEngComm. 13, 866-875. doi.org/10.1039/C0CE00523A


2010


[21] Rogers, M.A.,* Bot, A., Lam, R., Pedersen, T., and May, T. 2010. Multi-Component Hollow Tubules Formed Using Phytosterol and γ-Oryzanol Based Compounds: An Understanding of their Molecular Embrace. Journal of Physical Chemistry A. 114, 8278-8285. doi.org/10.1021/jp104101k


[20] Lam, R., Pederson, T., and Quaroni, L., and Rogers, M.A.* 2010. A Molecular Insight Into The Nature of Crystallographic Mismatches in Self-Assembled Fibrillar Networks Under Non-Isothermal Crystallization Conditions, Soft Matter. 6, 404-408. doi.org/10.1039/B919477K


[19] Rogers, M.A., Roos, Y.H., and Goff, H.D.* 2010. Structural heterogeneity and its effects on the enzyme kinetics in sucrose solutions containing protein and polysaccharide. Food Biochemistry. 1, 202-215. doi.org/10.1111/j.1745-4514.2009.00278.x


2009 & Prior


[18] Hughes, N.E., Marangoni, A.G., Wright, A.J., Rogers, M.A., and Rush. J.A.* 2009. Potential Food Applications of Edible Oil Organogels. 2010. Trends in Food Science. 20, 470-480. doi.org/10.1016/j.tifs.2009.06.002


[17] Rogers, M.A.* 2009. Novel Structuring Strategies for Unsaturated Fats– Meeting the Zero-Trans, Zero-Saturated Fat Challenge: A Review. Food Research International. 42, 747-753.doi.org/10.1016/j.foodres.2009.02.024


[16] Lam, R., Rogers, M.A., and Marangoni, A.G.* 2009. Thermo-mechanical method for the determination of the fractal dimension of fat. Journal of Thermal Analysis and Calorimetry. 98, 7-12. doi.org/10.1007/s10973-009-0271-5


[15] Rogers, M.A.,* Pederson, T., and Quaroni, L. 2009. Hydrogen Bonding Density of Supramolecular Structures for Self-Assembled Fibrillar Networks Probed Using Synchrotron Infrared Spectromicroscopy. Crystal Growth & Design. 9, 3621-3625. doi.org/10.1021/cg900370g


[14] Rogers, M.A.,* and Marangoni, A.G. 2009. Solvent modulated nucleation and crystallization kinetics of 12-hydroxystearic acid: a non-isothermal approach. Langmuir’s special issue on Self-Assembled Fibrillar Networks. 25, 5886-5896. doi.org/10.1021/la803566


[13] Rogers, M.A., Wright, A.J., Marangoni, A.G.* 2009. Oil Organogels: The Fat of the Future. Soft Matter. 5, 1594-1596. doi.org/10.1039/B822008P


[12] Rogers, M.A.* 2009. Solidifying Unsaturated Oils Without Trans or Saturated Fats: The Hardstock of the Future? Food Engineering & Ingredients. 34, 23-25. http://www.fei-online.com/index.php?id=2798


[11] Rogers, M.A., Wright, A.J., and Marangoni, A.G.* 2009. Nanostructuring fibre morphology and solvent inclusions for 12 hydroxystearic acid/canola oil organogels. Current Opinion in Colloid and Interface Science. 14, 33-42. doi.org/10.1016/j.cocis.2008.02.004


[10] Rogers, M.A.,* and Marangoni, A.G. 2008. Non-isothermal nucleation and crystallization of 12HSA in vegetable oil. Crystal Growth and Design. 8, 4596-4601. doi.org/10.1021/cg8008927


[9] Rogers, M.A., and Marangoni, A.G.* 2008. Post-crystallization increases in the mechanical strength of self-assembled fibrillar networks is due to an increase in network supramolecular ordering. Journal of Physics D. 41, 215501-215505. doi.org/10.1088/0022-3727/41/21/215501


[8] Rogers, M.A., Wright, A.J., and Marangoni, A.G.* 2008. Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Food Research International. 41, 1026-1034. doi.org/10.1016/j.foodres.2008.07.012


[7] Rogers, M.A., Wright, A.J., and Marangoni, A.G.* 2008. Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxysteric acid in edible oils. Soft Matter. 4, 1483-1490. doi.org/10.1039/B803299H


[6] Rogers, M.A., Smith, A.S., Wright, A.J., and Marangoni, A.G.* 2007. A Novel Imaging Technique for Vegetable Based Organogels. Journal of American Oil Chemists Society. 84, 899-906. doi.org/10.1007/s11746-007-1122-9


[5] Griffith, M.,Timonin, M., Wong, A.C.E., Gray, G.R., Akhter, S.R., Saldanha, M., Rogers, M.A., Weretilnyk, E.A., and Moffatt. B.* 2007. Adaptation of Thellungiella salsuginea to cold temperatures. Plant Cell and Environment. 30, 529-538. doi.org/10.1111/j.1365-3040.2007.01653.x


[4] Rogers, M.A., Roos, Y.H., and Goff, H.D.* 2006. Structural heterogeneity and its effects on the glass transition in sucrose solutions containing protein and polysaccharide. Food Hydrocolloids. 20, 774-779. doi.org/10.1016/j.foodhyd.2005.07.006


[3] Rogers, M.A., Wright, A.J., and Marangoni, A.G.* 2005. Microstructure of fat crystallizing on a collagenous surface. Special Issue on Lipid Structure and fat crystallization. European Journal of Lipid Science. 107, 684-688. doi.org/10.1002/ejlt.200501181


[2] Awad, T.S., Rogers, M.A., Marangoni, A.G.* 2004. Scaling behavior of the elastic modulus in colloidal networks of fat crystals. Journal of Physical Chemistry B, 108. 171-179. doi.org/10.1021/jp036285u


[1] Marangoni, A.G.* and Rogers, M.A., 2003. Structural basis for the yield stress in plastic disperse systems. Applied Physics Letters. 82, 3239-3241. doi.org/10.1063/1.1576502

Contents